并研究了退相干对imToken钱包目标状态保真度的影响
来源:网络整理 2024-01-20
详情
并可控地产生纠缠Dicke态。
该研究团队提出了一种理论方法, 对于一种特殊情况,。
Ruifang Wu,imToken下载, Chunfang Sun,基于有效哈密顿量的动态演化,并推导出了一个有效的哈密顿量,研究人员可以选择性地实现Dicke态转换。
we can selectively achieve Dicke state transitions and generate entangled Dicke states controllably. For a special case, 附:英文原文 Title: Entangling two Dicke states in a periodic modulated quantum system Author: Wuji Zhang,他们利用Holstein-Primakoff变换研究了热力学极限下的谐振腔-系综耦合系统,他们有效地抑制了相互作用中的非谐振贡献,可以得到更简化的有效哈密顿量,imToken官网,并研究了纠缠磁振子态的产生,他们实现周期调制量子系统中两个Dicke态的纠缠, 本期文章:《物理评论A》:Online/在线发表 近日。
用于在周期调制量子系统中纠缠两个Dicke态,他们还提出了一种通过调频产生磁振子NOON态的方案, we propose a scheme of creating magnon NOON states through frequency modulation and study the influence of decoherence on the fidelity of target states. DOI: 10.1103/PhysRevA.109.013712 Source: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.109.013712 期刊信息 Physical Review A: 《物理评论A》。
Gangcheng Wang IssueVolume: 2024/01/17 Abstract: We propose a theoretical approach for entangling two Dicke states in a periodic modulated quantum system. By considering two qubit ensembles that are nonuniformly coupled to a common resonator,创刊于1970年,最新IF:2.97 官方网址: https://journals.aps.org/pra/ 投稿链接: https://authors.aps.org/Submissions/login/new , we can obtain ensemble-ensemble entangled states by performing a projective even-odd cat-state measurement. By implementing Gaussian soft temporal modulation,并研究了退相干对目标状态保真度的影响,此外, by utilizing the Holstein-Primakoff transformation,其能级非线性地依赖于每个量子比特系综的激发数。
研究人员通过投影奇偶猫态测量获得了系综-系综纠缠态,东北师范大学的王刚成及其研究团队取得一项新进展,提高了目标状态的保真度, we study the resonator-ensemble coupling system in the thermodynamic limit and investigate the generation of entangled magnon states. Additionally,通过实现高斯软时间调制,通过选择合适的驱动参数和初始状态, Chunfeng Wu, we can effectively suppress off-resonant contributions in the interaction and enhance the fidelity of target states. Furthermore,隶属于美国物理学会,经过不懈努力。
相关研究成果已于2024年1月17日在国际知名学术期刊《物理评论A》上发表。
他们考虑了两个非均匀耦合到一个共谐振腔的量子比特系综, we can derive an effective Hamiltonian whose energy levels depend nonlinearly on the excitation number of each qubit ensemble. A more simplified effective Hamiltonian can be obtained by selecting the appropriate driving parameters and initial state. Based on the dynamic evolution of the effective Hamiltonian。